Impress Your Coworkers by Using SQL UNPIVOT!


I’ve recently encountered a very interesting question on Stack Overflow by an unnamed user. The question was about generating a table of the following form in Oracle, using a table valued function:

Description   COUNT
-------------------
TEST1         10 
TEST2         15
TEST3         25
TEST4         50

The logic that should be implemented for the COUNT column is the following:

  • TEST1: count of employees whose sal < 10000
  • TEST2: count of employees whose dept > 10
  • TEST3: count of employees whose hiredate > (SYSDATE-60)
  • TEST4: count of employees whose grade = 1

Challenge accepted!

For this exercise, let’s assume the following table:

CREATE TABLE employees (
  id NUMBER(18)     NOT NULL PRIMARY KEY,
  sal NUMBER(18, 2) NOT NULL,
  dept NUMBER(18)   NOT NULL,
  hiredate DATE     NOT NULL,
  grade NUMBER(18)  NOT NULL
);

INSERT INTO employees 
      VALUES (1, 10000,  1, SYSDATE     , 1);
INSERT INTO employees 
      VALUES (2,  9000,  5, SYSDATE - 10, 1);
INSERT INTO employees 
      VALUES (3, 11000, 13, SYSDATE - 30, 2);
INSERT INTO employees 
      VALUES (4, 10000, 12, SYSDATE - 80, 2);
INSERT INTO employees 
      VALUES (5,  8000,  7, SYSDATE - 90, 1);

How to calculate the COUNT values

In a first step, we’re going to look into how to best calculate the COUNT values. The simplest way is to calculate the values in individual columns, not rows. SQL newbies will probably resort to a canonical solution using nested SELECTs, which is very bad for performance reasons:

SELECT
  (SELECT COUNT(*) FROM employees 
      WHERE sal < 10000) AS test1,
  (SELECT COUNT(*) FROM employees 
      WHERE dept > 10) AS test2,
  (SELECT COUNT(*) FROM employees 
      WHERE hiredate > (SYSDATE - 60)) AS test3,
  (SELECT COUNT(*) FROM employees 
      WHERE grade = 1) AS test4
FROM dual;

Why is the query not optimal? There are four table accesses to find all the data:

unpivot-nested-select

If you add an index to each individual column being filtered, chances are at least to optimise individual subqueries, but for these kinds of reports, the occasional full table scan is perfectly fine, especially if you aggregate a lot of data.

Even if not optimal in speed, the above yields the correct result:

TEST1   TEST2   TEST3   TEST4
-----------------------------
2	2	3	3

How to improve the query, then?

Few people are aware of the fact that aggregate functions only aggregate non-NULL values. This has no effect, when you write COUNT(*), but when you pass an expression to the COUNT(expr) function, this becomes much more interesting!

The idea here is that you use a CASE expression that transforms each predicate’s TRUE evaluation into a non-NULL value, an the FALSE (or NULL) evaluation into NULL. The following query illustrates this approach

SELECT
  COUNT(CASE WHEN sal < 10000 THEN 1 END)
      AS test1,
  COUNT(CASE WHEN dept > 10 THEN 1 END)
      AS test2,
  COUNT(CASE WHEN hiredate > (SYSDATE-60) THEN 1 END)
      AS test3,
  COUNT(CASE WHEN grade = 1 THEN 1 END)
      AS test4
FROM employees;

… and yields again the correct result:

TEST1   TEST2   TEST3   TEST4
-----------------------------
2	2	3	3

Using FILTER() instead of CASE

The SQL standard and the awesome PostgreSQL database offer an even more convenient syntax for the above functionality. The little known FILTER() clause on aggregate functions.

In PostgreSQL, you’d write instead:

SELECT
  COUNT(*) FILTER (WHERE sal < 10000)
      AS test1,
  COUNT(*) FILTER (WHERE dept > 10)
      AS test2,
  COUNT(*) FILTER (WHERE hiredate > (SYSDATE - 60))
      AS test3,
  COUNT(*) FILTER (WHERE grade = 1)
      AS test4
FROM employees;

This is useful when you want to cleanly separate the FILTER() criteria from any other expression that you want to use for aggregating. E.g. when calculating a SUM().

In any case, the query now has to hit the table only once. The aggregation can then be performed entirely in memory.

unpivot-case-expression

This is always better than the previous approach, unless you have an index for every aggregation!

OK. Now how to get the results in rows?

The question on Stack Overflow wanted a result with TESTn values being put in individual rows, not columns.

Description   COUNT
-------------------
TEST1         2
TEST2         2
TEST3         3
TEST4         3

Again, there’s a canonical, not so performant approach to do this with UNION ALL:

SELECT 
  'TEST1' AS Description, 
  COUNT(*) AS COUNT 
FROM employees WHERE sal < 10000
UNION ALL
SELECT 
  'TEST2', 
  COUNT(*)
FROM employees WHERE dept > 10
UNION ALL
SELECT 
  'TEST3', 
  COUNT(*) 
FROM employees WHERE hiredate > (SYSDATE - 60)
UNION ALL
SELECT 
  'TEST4', 
  COUNT(*) 
FROM employees WHERE grade = 1

This approach is more or less equivalent to the nested selects approach, except for the column / row transposition (“unpivoting”). And the plan is also very similar:

unpivot-union-all

Transposition = (un)pivoting

Notice how I used the term “transpose”. That’s what we did, and it has a name: (un)pivoting. Not only does it have a name, but this feature is also supported out of the box in Oracle and SQL Server via the PIVOT and UNPIVOT keywords that can be placed after table references.

  • PIVOT transposes rows into columns
  • UNPIVOT transposes columns back into rows

So, we’ll take the original, optimal solution, and transpose that with UNPIVOT

SELECT *
FROM (
  SELECT
    COUNT(CASE WHEN sal < 10000 THEN 1 END)
      AS test1,
    COUNT(CASE WHEN dept > 10 THEN 1 END)
      AS test2,
    COUNT(CASE WHEN hiredate > (SYSDATE-60) THEN 1 END)
      AS test3,
    COUNT(CASE WHEN grade = 1 THEN 1 END)
      AS test4
  FROM employees
) t
UNPIVOT (
  count FOR description IN (
    "TEST1", "TEST2", "TEST3", "TEST4"
  )
)

All we need to do is wrap the original query in a derived table t (i.e. an inline SELECT in the FROM clause), and then “UNPIVOT” that table t, generating the count and description columns. The result is, again:

Description   COUNT
-------------------
TEST1         2
TEST2         2
TEST3         3
TEST4         3

The execution plan is still optimal. All the action is happening in memory.

unpivot-unpivot

Conclusion

PIVOT and UNPIVOT are very useful tools for reporting and reorganising data. There are many use-cases like the above, where you want to re-organise some aggregations. Other use-cases include settings or properties tables that implement an entity attribute value model, and you want to transform attributes from rows to columns (PIVOT), or from columns to rows (UNPIVOT)

Intrigued? Read on about PIVOT here:

4 thoughts on “Impress Your Coworkers by Using SQL UNPIVOT!

  1. Shouldn’t the UNPIVOT query be like this instead?

    SELECT *
    FROM (
        SELECT
          'TEST1' AS Description, 
          COUNT(*) AS COUNT
        FROM employees WHERE sal < 10000
        UNION ALL
        SELECT
          'TEST2', 
          COUNT(*)
        FROM employees WHERE dept > 10
        UNION ALL
        SELECT
          'TEST3', 
          COUNT(*) 
        FROM employees WHERE hiredate > (SYSDATE - 60)
        UNION ALL
        SELECT
          'TEST4', 
          COUNT(*) 
        FROM employees WHERE grade = 1
    ) t
    UNPIVOT (
      count FOR description IN (
        "TEST1", "TEST2", "TEST3", "TEST4"
      )
    )
    

    The one on your post is missing the `Description` and the `COUNT` aliases.

    • I invite you to observe with me the miracles of UNPIVOT in action:

      Also, please don’t go ahead with that UNION ALL approach. I explained in the article why it’s not optional…

      • I don’t get it. The inner-table only has 4 columns: test1, test2, test3 and test4. How does the UNPIVOT know that the description is in those columns because it has no notion of any `description` column.

        • How does it not have any notion of a “description” column? I named it “description” in the UNPIVOT clause:

          UNPIVOT (
            count FOR description IN ("TEST1", "TEST2", ...)
          )
          

          With:

          • specification for the resulting count column
          • specification for the resulting description column
          • specification of the input column names

          Now, this being intuitive or not is another question😉

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s