A Frequent Question: Does jOOQ Have a First Level Cache?

One of the more frequent questions people have when switching from JPA to jOOQ is how to migrate from using JPA’s first level cache?

There are two important things to notice here:

jOOQ is mainly used for what JPA folks call “projections”

If you’re using only JPA in your application, you may have gotten used to occasionally fetch DTOs through “projections”. The term “projection” in this context stems from relational algebra, where a projection is simply a SELECT clause in your SQL statement.

Projections are useful when you know that the result of a query will only used for further data processing, but you’re not going to store any modifications to the data back into the database. There are two advantages to this:

  1. You can project arbitrary expressions, including things that cannot be mapped to entities
  2. You can bypass most of the entity management logic, including first and second level caches

When you’re doing this, you will be using SQL – mostly because JPQL (or HQL) are very limited in scope. Ideally, you would be using jOOQ as your projecting query will be type safe and vendor agnostic. You could even use jOOQ to only build the query and run by JPA, although if you’re not fetching entities, you’d lose all result type information that jOOQ would provide you with, otherwise.

So, the advantage of using jOOQ for projections (rather than JPA) is obvious. Sticking to JPA is mainly justified in case you only have very few projection use-cases and they’re also very simple.

jOOQ can also be used for basic CRUD

The question from the above tweet hints at the idea that SQL is not a very good language to implement basic CRUD. Or as I tend to say:

What I mean by this is that it’s really boring to manually express individual statements like these all the time:

INSERT INTO foo (a, b) VALUES (?, ?)
INSERT INTO bar (a, b, c) VALUES (?, ?, ?)
UPDATE baz SET x = ? WHERE id = ?

With most such CRUD operations, we’re simply inserting all the columns, or a given subset of columns, into a target table. Or we’re modifying all the changed columns in that table. These statements are always the same, but they break as soon as we add / remove columns, so we need to fix them throughout our application.

When you’re using an ORM like Hibernate, all you have to change is your annotated meta model, and the generated queries will adapt automatically throughout your application. That’s a huge win!

Additional features

Full-fledged ORMs like Hibernate come with tons of additional features, including:

  • A way to map relationships between entities
  • A way to cache entities in the client

Both of these features are very useful in more sophisticated CRUD use-cases, where an application desires to load, mutate, and persist a complex object graph with many involved entities.

Is this really needed?

However, in simple cases, it might be sufficient to load only 1-2 entities explicitly using jOOQ (jOOQ calls them UpdatableRecord), modify them, and store them back again into the database.

In such cases, it often doesn’t make sense to cache the entity in the client, nor to model the entity relationship in the client. Instead, we can write code like this:

// Fetch an author
AuthorRecord author : create.fetchOne(AUTHOR, AUTHOR.ID.eq(1));

// Create a new author, if it doesn't exist yet
if (author == null) {
    author = create.newRecord(AUTHOR);
    author.setId(1);
    author.setFirstName("Dan");
    author.setLastName("Brown");
}

// Mark the author as a "distinguished" author and store it
author.setDistinguished(1);

// Executes an update on existing authors, or insert on new ones
author.store();

Notice how we haven’t hand-written a single SQL statement. Instead, behind the scenes, jOOQ has generated the necessary INSERT or UPDATE statement for you.

If this is sufficient, you definitely don’t need JPA, and can use a more lightweight programming model through using jOOQ directly.

A few additional features are available, including:

Conclusion

The conclusion is, if you’ve found and read this article because you wanted to replace JPA’s first level cache while migrating to jOOQ is:

Re-think your migration

You don’t have to replace the entirety of JPA. If you need its more sophisticated features, by all means, keep using it along with jOOQ. However, if you don’t need its more sophisticated features and the above CRUD features in jOOQ are sufficient, let go of the idea of needing a first level cache and embrace moving more logic into your SQL queries.

How to Write Multiset Conditions With Oracle VARRAY Types

Oracle is one of the few databases that implements the SQL standard ORDBMS extensions, which essentially allow for nested collections. Other databases that have these features to some extent are CUBRID, Informix, PostgreSQL.

Oracle has two types of nested collections:

-- Nested tables
CREATE TYPE t1 AS TABLE OF VARCHAR2(10);
/

-- Varrays
CREATE TYPE t2 AS VARRAY(10) OF VARCHAR2(10);
/

The main difference at first is that a nested table can be of arbitrary size, whereas a varray has a fixed maximum size. Other than that, they behave in similar ways.

When storing a nested collection in a table, there is another difference. Varrays can be inlined into the table just like any other data type, whereas nested tables have to be accompanied by an additional storage clause:

CREATE TABLE t (
  id NUMBER(10),
  t1 t1,
  t2 t2
)
NESTED TABLE t1 STORE AS t1_nt;

This is a minor hassle in terms of DDL. The runtime implications are more significant.

Multiset Conditions

The most important difference is the fact that all the useful multiset conditions are not available with varrays. For instance, consider running these statements:

INSERT INTO t VALUES (1, NULL, NULL);
INSERT INTO t VALUES (2, t1(), t2());
INSERT INTO t VALUES (
  3, 
  t1('abc', 'xyz', 'zzz'), 
  t2('abc', 'xyz', 'zzz')
);
INSERT INTO t VALUES (
  4, 
  t1('dup', 'dup', 'dup'), 
  t2('dup', 'dup', 'dup')
);

SELECT * FROM t WHERE 'abc' MEMBER OF t1;
SELECT * FROM t WHERE 'abc' MEMBER OF t2;

The result of these queries is:

ID  T1                        T2
-----------------------------------------------------
3   T1('abc', 'xyz', 'zzz')   T2('abc', 'xyz', 'zzz')

ORA-00932: inconsistent datatypes: expected UDT got TEST.T2

Bummer. The documentation is a bit unclear about this. It reads (emphasis mine):

he return value is TRUE if expr is equal to a member of the specified nested table or varray. The return value is NULL if expr is null or if the nested table is empty.

There is some explicit mention of varrays supporting these operations, but in most of the documentation, varrays are not mentioned. So, how can we write such operations with varrays? Here’s an list of translations of the nested table operator to the equivalent SQL expression for use with varrays.

These are the multiset conditions:

IS A SET condition

In SQL, everything is a (partially ordered) multiset by default. Sometimes, however, we want to work with sets, i.e. a special type of multiset that has no duplicate values. We can easily check whether nested tables are sets (or whether they aren’t):

-- Nested table version
SELECT * FROM t WHERE t1 IS A SET;

-- Varray version
SELECT * 
FROM t 
WHERE t2 IS NOT NULL
AND (SELECT count(*) FROM TABLE(t2)) 
  = (SELECT count(DISTINCT column_value) FROM TABLE(t2));

The IS A SET operation yields UNKNOWN if the nested table is NULL, so we have to take that into account as well. If it isn’t NULL, we can count the total values in the varray and compare that with the total distinct values in the varray.

The result is:

ID  T1                        T2
-----------------------------------------------------
2   T1()                      T2()
3   T1('abc', 'xyz', 'zzz')   T2('abc', 'xyz', 'zzz')

IS EMPTY condition

This predicate needs no explanation. It can be written as such:

-- Nested table version
SELECT * FROM t WHERE t1 IS EMPTY;

-- Varray version
SELECT * 
FROM t 
WHERE t2 IS NOT NULL
AND NOT EXISTS (
  SELECT * FROM TABLE (t2)
);

The result being:

ID  T1                 T2
---------------------------------------
2   T1()               T2()

MEMBER condition

This handy predicate can help check if a specific value is contained in a nested collection. It can be written as such:

-- Nested table version
SELECT * FROM t WHERE 'abc' MEMBER OF t1;

-- Varray version
SELECT *
FROM t
WHERE t2 IS NOT NULL
AND EXISTS (
  SELECT 1 FROM TABLE(t2) WHERE column_value = 'abc'
);

Yielding:

ID  T1                        T2
-----------------------------------------------------
3   T1('abc', 'xyz', 'zzz')   T2('abc', 'xyz', 'zzz')

SUBMULTISET condition

Just like the previous MEMBER condition, this predicate can help check if specific values (more than one) are contained in a nested collection. This is a bit more tricky than the previous emulations. The MEMBER condition works the same way for sets and multisets, as we’re checking if exactly one element is contained in the (multi)set.

When working with multisets, duplicates are allowed, and in the case of the SUBMULTISET operation, the following can be observed:

-- Equal multisets
t1() SUBMULTISET OF t1();
t1('a', 'a') SUBMULTISET OF t1('a', 'a');

-- Subsets
t1('a') SUBMULTISET OF t1('a', 'a');

-- But this is not true
t1('a', 'a') SUBMULTISET OF t1('a');

When we omit the fact that nested collections can be multisets and pretend we’re working with sets only, then the emulation of the SUBMULTISET operator is relatively easy:

-- Nested table version
SELECT * FROM t WHERE t1('abc', 'xyz') SUBMULTISET OF t1;

-- Varray version
SELECT *
FROM t
WHERE t2 IS NOT NULL
AND EXISTS (
  SELECT 1 FROM TABLE(t2) 
  WHERE column_value = 'abc'
  INTERSECT
  SELECT 1 FROM TABLE(t2) 
  WHERE column_value = 'xyz'
);

Yielding, once more:

ID  T1                        T2
-----------------------------------------------------
3   T1('abc', 'xyz', 'zzz')   T2('abc', 'xyz', 'zzz')

If we’re really working with multisets, things are a bit more tricky:

-- Nested table version
SELECT * FROM t WHERE t1('dup', 'dup') SUBMULTISET OF t1;

-- Varray version
SELECT *
FROM t
WHERE t2 IS NOT NULL
AND NOT EXISTS (
  SELECT column_value, count(*)
  FROM TABLE (t2('dup', 'dup')) x
  GROUP BY column_value
  HAVING count(*) > (
    SELECT count(*)
    FROM TABLE (t2) y
    WHERE y.column_value = x.column_value
  )
);

Yielding:

ID  T1                        T2
-----------------------------------------------------
4   T1('dup', 'dup', 'dup')   T2('dup', 'dup', 'dup')

How does it work? In the NOT EXISTS correlated subquery, we’re counting the number of duplicate values in the potential SUBMULTISET, effectively turning that SUBMULTISET into a SET using the GROUP BY operation.

We’re then comparing that count value from the left operand with the corresponding count value from the right operand. If there is no value in the left operand whose number of occurrences is bigger than the number of occurrences of that value in the right operand, then the whole left operand is a SUBMULTISET of the right operand.

Cool, eh? We’ll talk about performance another time :-)

MULTISET operators

Also very interesting, the multiset operators:

  • MULTISET EXCEPT [ ALL | DISTINCT ]
  • MULTISET INTERSECT [ ALL | DISTINCT ]
  • MULTISET UNION [ ALL | DISTINCT ]

Notice how there are some differences to the ordinary set operators that can be used in SELECT statements. In particular:

  • EXCEPT is used as defined in the standard, not MINUS
  • ALL is supported on all three operators, not just on UNION
  • ALL is the default, not DISTINCT

How can we work with these operators? Consider these queries:

SELECT id, t1 MULTISET EXCEPT t1('aaa', 'abc', 'dup', 'dup') r 
FROM t;

SELECT id, t1 MULTISET EXCEPT ALL t1('aaa', 'abc', 'dup', 'dup') r 
FROM t;

Both yielding:

ID   R
---------------------
1    (null)
2    T1()
3    T1('xyz', 'zzz')
4    T1('dup')

With this operator, we’re removing each element of the right operand once from the left operand:

  • 'aaa' does not appear in the left operand, so nothing happens
  • 'abc' appears on row with ID = 3 and we remove it
  • 'dup' appears on row with ID = 4, 3 times, and we remove it twice, leaving one value

Conversely, when adding DISTINCT, we’ll get:

SELECT t1 MULTISET EXCEPT DISTINCT t1('aaa', 'abc', 'dup') FROM t;

Yielding:

ID   R
---------------------
1    (null)
2    T1()
3    T1('xyz', 'zzz')
4    T1('')

The only difference is on row with ID = 4, where all 'dup' values were removed, regardless how many there were on either side of the MULTISET EXCEPT DISTINCT operator.

How to emulate this for varrays?

DISTINCT version

This is a bit easier, because we can now use MINUS:

-- Nested table version
SELECT t1 MULTISET EXCEPT DISTINCT t1('aaa', 'abc', 'dup', 'dup') 
FROM t;

-- Varray version
SELECT 
  id,
  CASE 
    WHEN t2 IS NULL THEN NULL 
    ELSE 
      CAST(MULTISET(
        SELECT column_value
        FROM TABLE (t2)
        MINUS
        SELECT column_value
        FROM TABLE (t2('aaa', 'abc', 'dup', 'dup'))
      ) AS t2)
  END r
FROM t;

Luckily, we can still cast a structural MULTISET type that we can obtain using the MULTISET() operator to a varray type. This greatly simplifies the task.

ALL version

If we want the MULTISET EXCEPT or MULTISET EXCEPT ALL semantics, things are trickier. Here’s a solution that resorts to using window functions, in order to turn a MULTISET back into a SET:

-- Nested table version
SELECT t1 MULTISET EXCEPT ALL t1('aaa', 'abc', 'dup', 'dup') 
FROM t;

-- Varray version
SELECT 
  id,
  CASE 
    WHEN t2 IS NULL THEN NULL 
    ELSE 
      CAST(MULTISET(
        SELECT column_value
        FROM (
          SELECT 
            column_value,
            row_number() OVER (
              PARTITION BY column_value 
              ORDER BY column_value) rn
          FROM TABLE (t2)
          MINUS
          SELECT 
            column_value, 
            row_number() OVER (
              PARTITION BY column_value 
              ORDER BY column_value) rn
          FROM TABLE (t2('aaa', 'abc', 'dup', 'dup'))
        )
      ) AS t2)
  END r
FROM t;

How does this work? Ideally, we’ll look at what this ROW_NUMBER() evaluates to on each row. For this, we use OUTER APPLY:

SELECT id, t2, column_value, rn
FROM t
OUTER APPLY (
  SELECT 
    column_value,
    row_number() OVER (
      PARTITION BY column_value
      ORDER BY column_value) rn
  FROM TABLE (t2)
);

The result is:

ID      T2                       COLUMN_VALUE  RN
-----------------------------------------------------
1       (null)                   (null)        (null)
2       T2()                     (null)        (null)
3       T2('abc', 'xyz', 'zzz')  abc           1
3       T2('abc', 'xyz', 'zzz')  xyz           1
3       T2('abc', 'xyz', 'zzz')  zzz           1
4       T2('dup', 'dup', 'dup')  dup           1
4       T2('dup', 'dup', 'dup')  dup           2
4       T2('dup', 'dup', 'dup')  dup           3

As can be seen, each duplicate value gets assigned a unique row number due to the nature of how ROW_NUMBER() works (this property can be very useful for solving the gaps-and-islands-problem. See trick #4).

Now that we turned our (COLUMN_VALUE) multiset into a (COLUMN_VALUE, RN) set (without duplicates), we can use MINUS again.

MULTISET INTERSECT and MULTISET UNION

MULTISET INTERSECT works exactly the same way as MULTISET EXCEPT, with the same window function based emulation in the MULTISET INTERSECT ALL case. MULTISET UNION is simpler, because Oracle knows UNION ALL, so we do not need to resort to such trickery.

Conclusion

Nested collections are a very powerful tool in Oracle SQL. Oracle knows two types of nested collections:

  • Nested tables
  • Varrays

Nested tables are trickier to maintain as you have to think of their storage more explicitly. Varrays can just be embedded into ordinary tables like any other column. But there’s a price to pay for using varrays. Oracle regrettably doesn’t support all of the above very useful multiset conditions and multiset operators.

Luckily, when you encounter a situation where you have varrays and cannot change that, you can still emulate each of the operators using more traditional SQL.