JDBC 4.0’s Lesser-known Clob.free() and Blob.free() Methods

When I talk about jOOQ at conferences, I always show this slide containing a bunch of very common JDBC mistakes that people often commit:

Six common JDBC bugs in this image

Six common JDBC bugs in this image

Can you find the bugs? Some of them are obvious, such as:

  • Line 4: Syntax errors resulting from bad concatenation on line 3
  • Line 7: Syntax errors and SQL injection risk due to variable inlining
  • Line 8: Wrong bind index resulting from a potential mismatch on line 3
  • Line 14: Wrong column name due to sloppy rename
  • Line 18: Bad resource management

But then, there’s another very subtle bug that most people are unaware of because the fix was only possible since the upgrade in Java 6 / JDBC 4.0. See the solution, below:

Solution to the previous six bugs

Solution to the previous six bugs

With JDBC 4.0, the Clob.free() and the Blob.free() methods were introduced. While calling them is optional, it may be a very bad idea not to call them as early as possible, as you should not rely on the garbage collector to kick in early enough to free these resources. In fact, in certain databases / JDBC drivers, LOBs can outlive individual statements and/or transactions. They’re beasts of their own. If you’re reading through the JDBC tutorial (and also in the JDBC specification), it says:

Blob, Clob, and NClob Java objects remain valid for at least the duration of the transaction in which they are created. This could potentially result in an application running out of resources during a long running transaction.

The same is true for arrays, which also have an Array.free() method since Java 6 / JDBC 4.0.

So if your application has long-running transactions, do call these free() methods, or make it a habit to always call them. We’ll file an issue to FindBugs to make this a potential bug pattern.

Top 10 Lists of Common Java Mistakes (That Makes Top 100!)

Top 10 lists are very popular, fun, and informative to read. But there are so many of them! How to choose the right one? Here’s a meta top 10 list helping you find the top 10 top 10 lists. On a more geeky note:

SELECT TOP 10 mistake FROM source1
UNION ALL
SELECT TOP 10 mistake FROM source2
UNION ALL
SELECT TOP 10 mistake FROM source3
...

In this selection, I have carefully removed all of those top 10 newbie mistake lists that pop up when performing an average Google search. Because there aren’t 10 newbie mistakes, there are about one million. I’m more interested in subtle mistakes and problems. So, join me in reading these awesome 10 lists of top 10 Java mistakes / best practices (in no particular order)

1: ZeroTurnaround’s 10 Common Pitfalls of Experienced Java Developers & Architects

ZeroTurnaround has just released this one, in time for my post. The JRebel guys usually employ quite a geeky tongue-in-cheek, which I really like, of course:

http://zeroturnaround.com/rebellabs/watch-out-for-these-10-common-pitfalls-of-experienced-java-developers-architects/

2: jOOQ’s 10 Subtle Best Practices When Coding Java

Some advertising in our own cause. We have a top 10 list as well, about very subtle things that can go wrong when writing Java:

https://blog.jooq.org/2013/08/20/10-subtle-best-practices-when-coding-java/

3: AppDynamic’s Top 10 Java Performance Problems

AppDynamics is giving away this interesting and very well-written eBook for only your contact information. (Don’t blame me if they’ll call you and sell you their products after you download the nice list).

http://info.appdynamics.com/Top10JavaPerformanceProblems_eBook.html

4: The AmiableAPI’s Java API Design Checklist

This isn’t exactly a top 10 list, but more of a style guide helping you to write a good, clean API. Something that isn’t so obvious to do if you don’t write APIs every day:

http://theamiableapi.com/2012/01/16/java-api-design-checklist/

5: Josh Bloch’s talk about How To Design a Good API and Why it Matters

While this one isn’t labeled as top 10, it certainly contains the top 10 things to do when designing APIs, citing from a very authoritative reference: Josh Bloch himself:

http://www.youtube.com/watch?v=heh4OeB9A-c

6: Top 10 Mistakes When Writing Server-Side JavaScript Using Rhino

Haha, just kidding. There’s only one mistake here. It’s the fact that you’re writing JavaScript. So, on the the real #6:

6: Pierre-Hugues Charbonneau’s Top 10 Causes of Java EE Enterprise Performance Problems

This one is extremely well-written. A very good read for all Java architects out there:

http://java.dzone.com/articles/top-10-causes-java-ee

7: Top 10 Interesting Statements by Adam Bien About the Java Enterprise Edition 6 (JEE 6)

I like to cite Adam Bien. He’s very dogmatic, pro JEE Java Rock Star. While I most certainly don’t agree with him in many aspects, I still enjoy reading his blog. This list is not by Adam Bien himself, but by a Kai Waehner, who has summarised Adam Bien’s opinions quite well:

http://www.kai-waehner.de/blog/2010/09/10/10-interesting-statements-of-adam-bien-about-the-java-enterprise-edition-6-jee-6/

8: Top 15 Worst Computer Software Blunders

OK, this one isn’t about Java in particular, neither does it show concrete best practices. But why do we need best practices and avoid common mistakes? Yes, because things can go terribly wrong. Here’s how wrong they can go:

http://www.intertech.com/Blog/15-worst-computer-software-blunders/

9: Top 10 Java People You Should Know

You think this list is incomplete? Very unlikely. But you still might be interested in looking up the top 10 Java people, which have influenced our every day work like few others. They have said many things in their professional lives, which could fill many more top 10 lists. Here’s the “Top 10 Java People You Should Know” list:

http://javastoreroom.blogspot.ch/2013/05/top-10-java-people-you-should-know.html

10: The Top 10 List of Best Java-Related Top 10 Lists

And here’s a killer list explaining all about the origins of tail-recursion and – possibly – StackOverflowErrors:

https://blog.jooq.org/2013/11/01/top-10-lists-of-common-java-mistakes-that-makes-top-100/

10 Subtle Best Practices when Coding Java

This is a list of 10 best practices that are more subtle than your average Josh Bloch Effective Java rule. While Josh Bloch’s list is very easy to learn and concerns everyday situations, this list here contains less common situations involving API / SPI design that may have a big effect nontheless.

I have encountered these things while writing and maintaining jOOQ, an internal DSL modelling SQL in Java. Being an internal DSL, jOOQ challenges Java compilers and generics to the max, combining generics, varargs and overloading in a way that Josh Bloch probably wouldn’t recommend for the “average API”.

jOOQ is the best way to write SQL in Java

Let me share with you 10 Subtle Best Practices When Coding Java:

1. Remember C++ destructors

Remember C++ destructors? No? Then you might be lucky as you never had to debug through any code leaving memory leaks due to allocated memory not having been freed after an object was removed. Thanks Sun/Oracle for implementing garbage collection!

But nonetheless, destructors have an interesting trait to them. It often makes sense to free memory in the inverse order of allocation. Keep this in mind in Java as well, when you’re operating with destructor-like semantics:

  • When using @Before and @After JUnit annotations
  • When allocating, freeing JDBC resources
  • When calling super methods

There are various other use cases. Here’s a concrete example showing how you might implement some event listener SPI:

@Override
public void beforeEvent(EventContext e) {
    super.beforeEvent(e);
    // Super code before my code
}

@Override
public void afterEvent(EventContext e) {
    // Super code after my code
    super.afterEvent(e);
}

Another good example showing why this can be important is the infamous Dining Philosophers problem. More info about the dining philosophers can be seen in this awesome post:
http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html

The Rule: Whenever you implement logic using before/after, allocate/free, take/return semantics, think about whether the after/free/return operation should perform stuff in the inverse order. tweet this

2. Don’t trust your early SPI evolution judgement

Providing an SPI to your consumers is an easy way to allow them to inject custom behaviour into your library / code. Beware, though, that your SPI evolution judgement may trick you into thinking that you’re (not) going to need that additional parameter. True, no functionality should be added early. But once you’ve published your SPI and once you’ve decided following semantic versioning, you’ll really regret having added a silly, one-argument method to your SPI when you realise that you might need another argument in some cases:

interface EventListener {
    // Bad
    void message(String message);
}

What if you also need a message ID and a message source? API evolution will prevent you from adding that parameter easily, to the above type. Granted, with Java 8, you could add a defender method, to “defend” you bad early design decision:

interface EventListener {
    // Bad
    default void message(String message) {
        message(message, null, null);
    }
    // Better?
    void message(
        String message,
        Integer id,
        MessageSource source
    );
}

Note, unfortunately, the defender method cannot be made final.

But much better than polluting your SPI with dozens of methods, use a context object (or argument object) just for this purpose.

interface MessageContext {
    String message();
    Integer id();
    MessageSource source();
}

interface EventListener {
    // Awesome!
    void message(MessageContext context);
}

You can evolve the MessageContext API much more easily than the EventListener SPI as fewer users will have implemented it.

The Rule: Whenever you specify an SPI, consider using context / parameter objects instead of writing methods with a fixed amount of parameters. tweet this

Remark: It is often a good idea to also communicate results through a dedicated MessageResult type, which can be constructed through a builder API. This will add even more SPI evolution flexibility to your SPI.

3. Avoid returning anonymous, local, or inner classes

Swing programmers probably have a couple of keyboard shortcuts to generate the code for their hundreds of anonymous classes. In many cases, creating them is nice as you can locally adhere to an interface, without going through the “hassle” of thinking about a full SPI subtype lifecycle.

But you should not use anonymous, local, or inner classes too often for a simple reason: They keep a reference to the outer instance. And they will drag that outer instance to wherevery they go, e.g. to some scope outside of your local class if you’re not careful. This can be a major source for memory leaks, as your whole object graph will suddenly entangle in subtle ways.

The Rule: Whenever you write an anonymous, local or inner class, check if you can make it static or even a regular top-level class. Avoid returning anonymous, local or inner class instances from methods to the outside scope. tweet this

Remark: There has been some clever practice around double-curly braces for simple object instantiation:

new HashMap<String, String>() {{
    put("1", "a");
    put("2", "b");
}}

This leverages Java’s instance initializer as specified by the JLS §8.6. Looks nice (maybe a bit weird), but is really a bad idea. What would otherwise be a completely independent HashMap instance now keeps a reference to the outer instance, whatever that just happens to be. Besides, you’ll create an additional class for the class loader to manage.

4. Start writing SAMs now!

Java 8 is knocking on the door. And with Java 8 come lambdas, whether you like them or not. Your API consumers may like them, though, and you better make sure that they can make use of them as often as possible. Hence, unless your API accepts simple “scalar” types such as int, long, String, Date, let your API accept SAMs as often as possible.

What’s a SAM? A SAM is a Single Abstract Method [Type]. Also known as a functional interface, soon to be annotated with the @FunctionalInterface annotation. This goes well with rule number 2, where EventListener is in fact a SAM. The best SAMs are those with single arguments, as they will further simplify writing of a lambda. Imagine writing

listeners.add(c -> System.out.println(c.message()));

Instead of

listeners.add(new EventListener() {
    @Override
    public void message(MessageContext c) {
        System.out.println(c.message()));
    }
});

Imagine XML processing through jOOX, which features a couple of SAMs:

$(document)
    // Find elements with an ID
    .find(c -> $(c).id() != null)
    // Find their  child elements
    .children(c -> $(c).tag().equals("order"))
    // Print all matches
    .each(c -> System.out.println($(c)))

The Rule: Be nice with your API consumers and write SAMs / Functional interfaces already now. tweet this

Remarks: A couple of interesting blog posts about Java 8 Lambdas and improved Collections API can be seen here:

5. Avoid returning null from API methods

I’ve blogged about Java’s NULLs once or twice. I’ve also blogged about Java 8’s introduction of Optional. These are interesting topics both from an academic and from a practical point of view.

While NULLs and NullPointerExceptions will probably stay a major pain in Java for a while, you can still design your API in a way that users will not run into any issues. Try to avoid returning null from API methods whenever possible. Your API consumers should be able to chain methods whenever applicable:

initialise(someArgument).calculate(data).dispatch();

In the above snippet, none of the methods should ever return null. In fact, using null’s semantics (the absence of a value) should be rather exceptional in general. In libraries like jQuery (or jOOX, a Java port thereof), nulls are completely avoided as you’re always operating on iterable objects. Whether you match something or not is irrelevant to the next method call.

Nulls often arise also because of lazy initialisation. In many cases, lazy initialisation can be avoided too, without any significant performance impact. In fact, lazy initialisation should be used carefully, only. If large data structures are involved.

The Rule: Avoid returning nulls from methods whenever possible. Use null only for the “uninitialised” or “absent” semantics. tweet this

6. Never return null arrays or lists from API methods

While there are some cases when returning nulls from methods is OK, there is absolutely no use case of returning null arrays or null collections! Let’s consider the hideous java.io.File.list() method. It returns:

An array of strings naming the files and directories in the directory denoted by this abstract pathname. The array will be empty if the directory is empty. Returns null if this abstract pathname does not denote a directory, or if an I/O error occurs.

Hence, the correct way to deal with this method is

File directory = // ...

if (directory.isDirectory()) {
    String[] list = directory.list();

    if (list != null) {
        for (String file : list) {
            // ...
        }
    }
}

Was that null check really necessary? Most I/O operations produce IOExceptions, but this one returns null. Null cannot hold any error message indicating why the I/O error occurred. So this is wrong in three ways:

  • Null does not help in finding the error
  • Null does not allow to distinguish I/O errors from the File instance not being a directory
  • Everyone will keep forgetting about null, here

In collection contexts, the notion of “absence” is best implemented by empty arrays or collections. Having an “absent” array or collection is hardly ever useful, except again, for lazy initialisation.

The Rule: Arrays or Collections should never be null. tweet this

7. Avoid state, be functional

What’s nice about HTTP is the fact that it is stateless. All relevant state is transferred in each request and in each response. This is essential to the naming of REST: Representational State Transfer. This is awesome when done in Java as well. Think of it in terms of rule number 2 when methods receive stateful parameter objects. Things can be so much simpler if state is transferred in such objects, rather than manipulated from the outside. Take JDBC, for instance. The following example fetches a cursor from a stored procedure:

CallableStatement s =
  connection.prepareCall("{ ? = ... }");

// Verbose manipulation of statement state:
s.registerOutParameter(1, cursor);
s.setString(2, "abc");
s.execute();
ResultSet rs = s.getObject(1);

// Verbose manipulation of result set state:
rs.next();
rs.next();

These are the things that make JDBC such an awkward API to deal with. Each object is incredibly stateful and hard to manipulate. Concretely, there are two major issues:

  • It is very hard to correctly deal with stateful APIs in multi-threaded environments
  • It is very hard to make stateful resources globally available, as the state is not documented
State is like a box of chocolates

Theatrical poster for Forrest Gump, Copyright © 1994 by Paramount Pictures. All Rights Reserved. It is believed that the above usage fulfils what is known as Fair Use

The Rule: Implement more of a functional style. Pass state through method arguments. Manipulate less object state. tweet this

8. Short-circuit equals()

This is a low-hanging fruit. In large object graphs, you can gain significantly in terms of performance, if all your objects’ equals() methods dirt-cheaply compare for identity first:

@Override
public boolean equals(Object other) {
    if (this == other) return true;

    // Rest of equality logic...
}

Note, other short-circuit checks may involve null checks, which should be there as well:

@Override
public boolean equals(Object other) {
    if (this == other) return true;
    if (other == null) return false;

    // Rest of equality logic...
}

The Rule: Short-circuit all your equals() methods to gain performance. tweet this

9. Try to make methods final by default

Some will disagree on this, as making things final by default is quite the opposite of what Java developers are used to. But if you’re in full control of all source code, there’s absolutely nothing wrong with making methods final by default, because:

  • If you do need to override a method (do you really?), you can still remove the final keyword
  • You will never accidentally override any method anymore

This specifically applies for static methods, where “overriding” (actually, shadowing) hardly ever makes sense. I’ve come across a very bad example of shadowing static methods in Apache Tika, recently. Consider:

TikaInputStream extends TaggedInputStream and shadows its static get() method with quite a different implementation.

Unlike regular methods, static methods don’t override each other, as the call-site binds a static method invocation at compile-time. If you’re unlucky, you might just get the wrong method accidentally.

The Rule: If you’re in full control of your API, try making as many methods as possible final by default. tweet this

10. Avoid the method(T…) signature

There’s nothing wrong with the occasional “accept-all” varargs method that accepts an Object... argument:

void acceptAll(Object... all);

Writing such a method brings a little JavaScript feeling to the Java ecosystem. Of course, you probably want to restrict the actual type to something more confined in a real-world situation, e.g. String.... And because you don’t want to confine too much, you might think it is a good idea to replace Object by a generic T:

void acceptAll(T... all);

But it’s not. T can always be inferred to Object. In fact, you might as well just not use generics with the above methods. More importantly, you may think that you can overload the above method, but you cannot:

void acceptAll(T... all);
void acceptAll(String message, T... all);

This looks as though you could optionally pass a String message to the method. But what happens to this call here?

acceptAll("Message", 123, "abc");

The compiler will infer <? extends Serializable & Comparable<?>> for T, which makes the call ambiguous!

So, whenever you have an “accept-all” signature (even if it is generic), you will never again be able to typesafely overload it. API consumers may just be lucky enough to “accidentally” have the compiler chose the “right” most specific method. But they may as well be tricked into using the “accept-all” method or they may not be able to call any method at all.

The Rule: Avoid “accept-all” signatures if you can. And if you cannot, never overload such a method. tweet this

Conclusion

Java is a beast. Unlike other, fancier languages, it has evolved slowly to what it is today. And that’s probably a good thing, because already at the speed of development of Java, there are hundreds of caveats, which can only be mastered through years of experience.

jOOQ is the best way to write SQL in Java

Stay tuned for more top 10 lists on the subject!