jOOQ 3.10 Supports Exciting MySQL 8.0 Features

In recent months, there had been some really exciting news from the MySQL team:

These two SQL standard language features are among the most powerful SQL features that are available from most other databases. I frequently include them in conference talks about SQL (see my article about 10 SQL Tricks That You Didn’t Think Were Possible), and as well in the Data Geekery SQL Masterclass. With MySQL 8.0 now supporting these exciting features, the masterclass will be including MySQL as well (along with Oracle, SQL Server, PostgreSQL, and DB2). And, of course, these features are now supported in the upcoming jOOQ 3.10 as well.

Want to try it out yourself? Just run:

docker pull mysql:8.0.2
docker run --name MYSQL802 --net=host -p 3306:3306 -e MYSQL_ROOT_PASSWORD=test -d mysql:8.0.2

Then, connect to this instance and run this nice little query in it:

WITH RECURSIVE t(a, b) AS (
  SELECT 1, CAST('a' AS CHAR(15))
  UNION ALL
  SELECT t.a + 1, CONCAT(t.b, 'a')
  FROM t
  WHERE t.a < 10
)
SELECT a, SUM(a) OVER (ORDER BY a) AS ∑, b
FROM t

And get this result:

a       ∑       b
--------------------------
1       1       a
2       3       aa
3       6       aaa
4       10      aaaa
5       15      aaaaa
6       21      aaaaaa
7       28      aaaaaaa
8       36      aaaaaaaa
9       45      aaaaaaaaa
10      55      aaaaaaaaaa

Would you believe this is MySQL?

Bonus

A nice “hidden” feature is the support of new pessimistic locking clauses, in particular FOR UPDATE SKIP LOCKED. This has been available in Oracle for ages and since recently in PostgreSQL as well, and now in MySQL. A very useful feature when implementing simple message queues or reservation systems. More details in this article here:

http://mysqlserverteam.com/mysql-8-0-1-using-skip-locked-and-nowait-to-handle-hot-rows/

Of course, SKIP LOCKED (and NOWAIT) will be supported in jOOQ 3.10 as well.

How to Execute SQL Batches With JDBC and jOOQ

Some databases (in particular MySQL and T-SQL databases like SQL Server and Sybase) support a very nice feature: They allow for running a “batch” of statements in a single statement. For instance, in SQL Server, you can do something like this:

-- Statement #1
DECLARE @table AS TABLE (id INT);

-- Statement #2
SELECT * FROM @table;

-- Statement #3
INSERT INTO @table VALUES (1),(2),(3);

-- Statement #4
SELECT * FROM @table;

This is a batch of 4 statements, and it can be executed as a single statement both with JDBC and with jOOQ. Let’s see how:

Executing a batch with JDBC

Unfortunately, the term “batch” has several meanings, and in this case, I don’t mean the JDBC Statement.addBatch() method, which is actually a bit clumsy as it doesn’t allow for fetching mixed update counts and result sets.

Instead, what I’ll be doing is this:

String sql =
    "\n  -- Statement #1                              "
  + "\n  DECLARE @table AS TABLE (id INT);            "
  + "\n                                               "
  + "\n  -- Statement #2                              "
  + "\n  SELECT * FROM @table;                        "
  + "\n                                               "
  + "\n  -- Statement #3                              "
  + "\n  INSERT INTO @table VALUES (1),(2),(3);       "
  + "\n                                               "
  + "\n  -- Statement #4                              "
  + "\n  SELECT * FROM @table;                        ";

try (PreparedStatement s = c.prepareStatement(sql)) {
    fetchLoop:
    for (int i = 0, updateCount = 0;; i++) {
        boolean result = (i == 0)
            ? s.execute()
            : s.getMoreResults();

        if (result)
            try (ResultSet rs = s.getResultSet()) {
                System.out.println("\nResult:");

                while (rs.next())
                    System.out.println("  " + rs.getInt(1));
            }
        else if ((updateCount = s.getUpdateCount()) != -1)
            System.out.println("\nUpdate Count: " + updateCount);
        else
            break fetchLoop;
    }
}

The output of the above program being:

Result:

Update Count: 3

Result:
  1
  2
  3

The above API usage is a somewhat “hidden” – or at least not every day usage of the JDBC API. Mostly, you’ll be using Statement.executeQuery() when you’re expecting a ResultSet, or Statement.executeUpdate() otherwise.

But in our case, we don’t really know what’s happening. We’re going to discover the result types on the fly, when executing the statement. Here are the main JDBC API features that we’re using, along with an explanation:

  • Statement.execute(): This method should be used if we don’t know the result type. The method returns a boolean, which is true when the first statement in the batch produced a ResultSet and false otherwise.
  • Statement.getMoreResults(): This method returns the same kind of boolean value as the previous Statement.execute() method, but it does so for the next statement in the batch (i.e. for every statement except the first).
  • If the current result is a ResultSet (the boolean was true), then we’ll obtain that ResultSet through Statement.getResultSet() (we can obviously no longer call the usual Statement.executeQuery() to obtain the ResultSet).
  • If the current result is not a ResultSet (the boolean was true), then we’ll check the update count value through Statement.getUpdateCount().
  • If the update count is -1, then we’ve reached the end of the batch.

What a nice state machine!

The nice thing about this is that a batch may be completely nondeterministic. E.g. there may be triggers, T-SQL blocks (e.g. an IF statement), stored procedures, and many other things that contribute result sets and/or update counts. In some cases, we simply don’t know what we’ll get.

Executing a batch with jOOQ

It’s great that the JDBC API designers have thought of this exotic API usage on a rather low level. This makes JDBC extremely powerful. But who remembers the exact algorithm all the time? After all, the above minimalistic version required around 20 lines of code for something as simple as that.

Compare this to the following jOOQ API usage:

System.out.println(
    DSL.using(c).fetchMany(sql)
);

The result being:

Result set:
+----+
|  id|
+----+
Update count: 3
Result set:
+----+
|  id|
+----+
|   1|
|   2|
|   3|
+----+

Huh! Couldn’t get much simpler than that! Let’s walk through what happens:

The DSLContext.fetchMany() method is intended for use when users know there will be many result sets and/or update counts. Unlike JDBC which reuses ordinary JDBC API, jOOQ has a different API here to clearly distinguish between behaviours. The method then eagerly fetches all the results and update counts in one go (lazy fetching is on the roadmap with issue #4503).

The resulting type is org.jooq.Results, a type that extends List<Result>, which allows for iterating over the results only, for convenience. If a mix of results or update counts need to be consumed, the Results.resultsOrRows() method can be used.

A note on warnings / errors

Note that if your batch raises errors, then the above JDBC algorithm is incomplete. Read more about this in this follow-up post.

The 10 Most Popular DB Engines (SQL and NoSQL) in 2015

About two years ago, we’ve published this post about the 10 most popular DB engines, where we analyzed the data published by Solid IT on their DB Ranking website.

In the meantime, the Solid IT measurement system has found to be a credible source, such that the website has also been cited at Gartner, InfoWorld, and many other sources. For more details about how this is measured, check out the relevant website on db-engines.com:
http://db-engines.com/en/ranking_definition

Comparing the top 10 list, we can see that the players have shifted, heavily:

Reproduced with permission of DB-Engines.com

Reproduced with permission of DB-Engines.com

The top 3 elefants are still Oracle, MySQL and Microsoft SQL Server, but the runner-ups have changed. While PostgreSQL is still gaining traction, it has lost grounds compared to MongoDB.

Also, Cassandra and Redis have pushed out Sybase and Teradata from the top 10!

When 2 years ago, there had been only a single non RDBMS in this top 10 list, there are now 3, all of which “schema-less”, and they’re gaining additional momentum.

Clearly, vendors of RDBMS will need to move quickly to accommodate the needs of document storage and key-value storage the way their new competitors do.

For us on the jOOQ blog, a much more interesting perspective is to see where our supported databases currently are in this ranking:

Reproduced with permission of DB-Engines.com

Reproduced with permission of DB-Engines.com

With the recent release of jOOQ 3.7, we’ve added another three databases to our list of now 21 supported RDBMS. Compared to last year’s ranking, almost all of these RDBMS are gaining traction as well, apart from SQL Server.

One thing is certain: We still have very exciting times ahead. Stay tuned for more updates, and check out the current ranking here:

http://db-engines.com/en/ranking

Use MySQL’s Strict Mode on all new Projects!

MySQL is a database that has been bending the SQL standard in ways that make it hard to move off MySQL. What may appear to be a clever technique for vendor lockin (or maybe just oversight of the standard) can be quite annoying in understanding the real meaning of the SQL language.

One such example is MySQL’s interpretation of how GROUP BY works. In MySQL, unlike any other database, you can put arbitrary expressions into your SELECT clause, even if they do not have a formal dependency on the GROUP BY expression. For instance:

SELECT employer, first_name, last_name
FROM employees
GROUP BY employer

This will work in MySQL, but what does it mean? If we only have one resulting record per employer, which one of the employees will be returned? The semantics of the above query is really this one:

SELECT employer, ARBITRARY(first_name), ARBITRARY(last_name)
FROM employees
GROUP BY employer

If we assume that there is such an aggregation function as ARBITRARY(). Some may claim that this can be used for some clever performance “optimisation”. I say: Don’t. This is so weakly specified, it is not even clear if the two references of this pseudo-ARBITRARY() aggregate function will produce values from the same record.

Just look at the number of Stack Overflow questions that evolve around the “not a GROUP BY expression” error:

I’m sure that parts of this damage that has been caused to a generation of SQL developers is due to the fact that this works in some databases.

ONLY_FULL_GROUP_BY

But there is a flag in MySQL called ONLY_FULL_GROUP_BY, and Morgan Tocker, the MySQL community manager suggests eventually turning it on by default.

MySQL community members tend to agree that this is a good decision in the long run.

While it is certainly very hard to turn this flag on for a legacy application, all new applications built on top of MySQL should make sure to turn on this flag. In fact, new applications should even consider turning on “strict SQL mode” entirely, to make sure they get a better, more modern SQL experience.

For more information about MySQL server modes, please consider the manual:

http://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

Don’t Migrate to MariaDB just yet. MySQL is Back!

Now that I have your attention, I’d like to invite you to a critical review of where we’re at in the MySQL vs. MariaDB debate. Around one month ago, I visited Oracle Open World 2014, and I’ve met with Morgan Tocker, the MySQL community manager at Oracle to learn about where MySQL is heading.

Who “is” MySQL

An interesting learning for myself is the fact that according to Morgan, there had been quite a few former MySQL AB employees that stayed with MySQL when Sun acquired the database, and that are still there now (perhaps after a short break), now that Oracle owns Sun and thus MySQL. In fact, right now as we speak, Oracle is pushing hard to get even more people on board of the MySQL team. When this article was written, there were 21 open MySQL jobs on this blog post dating February 25, 2014.

More details about Oracle’s plans to promote and push MySQL can be seen in this presentation by Morten Andersen:

oracle-mysql

So, if you’re still contemplating a migration to MariaDB, maybe give this all a second thought. MySQL is still the database that is being used by most large companies, including Facebook and LinkedIn. MySQL won’t go away and it will get much better in the next couple of years – maybe even to a point where it has a similar amount of features as PostgreSQL? We can only hope.

Need another convincing argument? You can now use Oracle Enterprise Manager for both Oracle and MySQL databases. How awesome is that!

enterprise-manager

Stay tuned for a couple of additional blog posts on this blog, about what’s new and what’s on the MySQL roadmap in the next years. See all of Morten Andersen’s slides here:

Frightening Facts about MySQL

So you might’ve seen Destroy all Software’s talk about JavaScript:

Here’s a similar talk (less funny more scary) about MySQL:

Should I Put That Table Alias or Not?

Infrequent SQL developers often get confused about when to put parentheses and/or aliases on derived tables. There has been this recent Reddit discussion about the subject, where user Elmhurstlol was wondering why they needed to provide an alias to the derived table (the subselect with the UNION) in the following query:

SELECT AVG(price) AS AVG_PRICE
FROM (
  SELECT price from product a JOIN pc b
  ON a.model=b.model AND maker='A'
  UNION ALL
  SELECT price from product a JOIN laptop c
  ON a.model=c.model and maker='A'
) hello

The question really was about why the "hello" table alias was necessary, because often it seems not to be required.

Here’s what the SQL standard states

If in doubt, it is often useful to consider the SQL standard about the rationale behind some syntax elements. In this case, let’s consider the freely available SQL 1992 standard text (for simplicity), and see how it specifies table references:

<table reference> ::=
    <table name> [ [ AS ] <correlation name>
        [ <left paren> <derived column list> 
          <right paren> ] ]
  | <derived table> [ AS ] <correlation name>
        [ <left paren> <derived column list>
          <right paren> ]
  | <joined table>

<derived table> ::= <table subquery>

<table subquery> ::= <subquery>

<subquery> ::= <left paren> <query expression>
               <right paren>

(for more information about the awesome and completely underused derived column list feature, read this article here)

The essence of the above syntax specification is this:

  • A derived table MUST always be aliased
  • The AS keyword is optional, for improved readability
  • The parentheses MUST always be put around subqueries

Following these rules, you’ll be pretty safe in most SQL dialects. Here are some deviations to the above, though:

  • Some dialects allow for unaliased derived tables. However, this is still a bad idea, because you will not be able to unambiguously qualify a column from such a derived table

Takeaway

Always provide a meaningful alias to your derived tables. As simple as that.