jOOQ Tuesdays: Nicolai Parlog Talks About Java 9

Welcome to the jOOQ Tuesdays series. In this series, we’ll publish an article on the third Tuesday every other month where we interview someone we find exciting in our industry from a jOOQ perspective. This includes people who work with SQL, Java, Open Source, and a variety of other related topics.

I’m very excited to feature today Nicolai Parlog, author of The Java Module System

Nicolai, your blog is an “archeological” treasure trove for everyone who wants to learn about why Java expert group decisions were made. What made you dig out all these interesting discussions on the mailing lists?

Ha, thank you, didn’t know I was sitting on a treasure.

It all started with everyone’s favorite bikeshed: Optional. After using it for a few months, I was curious to learn more about the reason behind its introduction to Java and why it was designed the way it was, so I started digging and learned a few things:

  • Piperman, the JDK mailing list archive, is a horrible place to peruse and search.
  • Mailing list discussions are often lengthy, fragmented, and thus hard to revisit.
  • Brian Goetz was absolutely right: Everything related to Optional seems to take 300 messages.

Consequently, researching that post about Optional’s design took a week or so. But as you say, it’s interesting to peek behind the curtain and once a discussion is condensed to its most relevant positions and peppered with some context it really appeals to the wider Java community.

I actually think there’s a niche to be filled, here. Imagine there were a site that did regularly (at least once a week) what I did with a few selected topics: Follow the JDK mailing list, summarize ongoing discussions, and make them accessible to a wide audience. That would be a great service to the Java community as it would make it much easier to follow what is going on and to chime in with an informed opinion when you feel you have something to contribute. Now we just need to find someone with a lot of free time on their hands.

By the way, I think it’s awesome that the comparitively open development of the JDK makes that possible.

I had followed your blog after Java 8 came out, where you explained expert group decisions in retrospect. Now, you’re mostly covering what’s new in Java 9. What are your favourite “hidden” (i.e. non-Jigsaw) Java 9 features and why?

From the few language changes, it’s easy pickings: definitely private interface methods. I’ve been in the situation more than once that I wanted to share code between default methods but found no good place to put it without making it part of the public API. With private mehods in interfaces, that’s a thing of the past.

When it comes to API changes, the decision is much harder as there is more to choose from. People definitely like collection factory methods and I do, too, but I think I’ll go with the changes to Stream and Optional. I really enjoy using those Java 8 features and think it’s great that they’ve been improved in 9.

A JVM feature I really like are multi-release JARs. The ability to ship a JAR that uses the newest APIs, but degrades gracefully on older JVMs will come in very handy. Some projects, Spring for example, already do this, but without JVM support it’s not exactly pleasant.

Can I go on? Because there’s so much more! Just two: Unified logging makes it much easier to tease out JVM log messages without having to configure logging for different subsystems and compact strings and indified string concatenation make working with strings faster, reduce garbage and conserve heap space (on average, 10% to 15% less memory!). Ok, that were three, but there you go.

You’re writing a book on the Java 9 module system that can already be pre-ordered on Manning. What will readers get out of your book?

All they need to become module system experts. Of course it explains all the basics (delcaring, compiling, packaging, and running modular applications) and advanced features (services, implied readability, optional dependencies, etc), but it goes far beyond that. More than how to use a feature it also explains when and why to use it, which nuances to consider, and what are good defaults if you’re not sure which way to go.

It’s also full of practical advice. I migrated two large applications to Java 9 (compiling and running on the new release, not turning them into modules) and that experience as well as the many discussions on the mailing list informed a big chapter on migration. If readers are interested in a preview, I condensed it into a post on the most common Java 9 migration challenges. I also show how to debug modules and the module system with various tools (JDeps for example) and logging (that’s when I started using uniform logging), Last but not least, I plan to include a chapter that simply lists error messages and what to do about them.

In your opinion, what are the good parts and the bad parts about  Jigsaw? Do you think Jigsaw will be adopted quickly?

The good, the bad, and the ugly, eh? My favorite feature (of all of Java 9 actually) is strong encapsulation. The ability to have types that are public only within a module is incredibly valuable! This adds another option to the private-to-public-axis and once people internalize that feature we will wonder how we ever lived without it. Can you imagine giving up private? We will think the same about exported.

I hope the worst aspect of the module system will be the compatibility challenges. That’s a weird way to phrase it, but let me explain. These challenges definitely exist and they will require a non-neglectable investmement from the Java community as a whole to get everything working on Java 9, in the long run as modules. (As an aside: This is well invested time – much of it pays back technical debt.)

My hope is that no other aspect of the module system turns out to be worse. One thing I’m a little concerned about is the strictness of reliable configuration. I like the general principle and I’m definitely one for enforcing good practices, but just think about all those POMs that busily exclude transitive dependencies. Once all those JARs are modules, that won’t work – the module system will not let you launch without all dependencies present.

Generally speaking, the module system makes it harder to go against the maintainers’ decisions. Making internal APIs available via reflection or altering dependencies now goes against the grain of a mechanism that is built deeply into the compiler and JVM. There are of course a number of command line flags to affect the module system but they don’t cover everything. To come back to exclusing dependencies, maybe–ignore-missing-modules ${modules} would be a good idea…

Regarding adoption rate, I expect it to be slower than Java 8. But leaving those projects aside that see every new version as insurmountable and are still on Java 6, I’m sure the vast majority will migrate eventually. If not for Java 9’s features than surely for future ones. As a friend and colleague once said: “I’ll do everything to get to value types.”

Now that Java 9 is out and “legacy”, what Java projects will you cover next in your blog and your work?

Oh boy, I’m still busy with Java 9. First I have to finish the book (November hopefully) and then I want to do a few more migrations because I actually like doing that for some weird and maybe not entirely healthy reason (the things you see…). FYI, I’m for hire, so if readers are stuck with their migration they should reach out.

Beyond that, I’m already looking forward to primitive specialization, e.g. ArrayList<int>, and value types (both from Project Valhalla) as well as the changes Project Amber will bring to Java. I’m sure I’ll start discussing those in 2018.

Another thing I’ll keep myself busy with and which I would love your readers to check out is my YouTube channel. It’s still very young and until the book’s done I won’t do a lot of videos (hope to record one next week), but I’m really thrilled about the whole endavour!

JEP 277 “Enhanced Deprecation” is Nice. But Here’s a Much Better Alternative

Maintaining APIs is hard.

We’re maintaining the jOOQ API which is extremely complex. But we are following relatively relaxed rules as far as semantic versioning is concerned.

When you read comments by Brian Goetz and others about maintaining backwards-compatibility in the JDK, I can but show a lot of respect for their work. Obviously, we all wish that things like Vector, Stack, Hashtable were finally removed, but there are backwards-compatibility related edge cases around the collections API that ordinary mortals will never think of. For instance: Why aren’t Java Collections remove methods generic?

Better Deprecation

Stuart Marks aka Dr Deprecator

Stuart Marks aka Dr Deprecator

With Java 9, Jigsaw, and modularity, one of the main driving goals for the new features is to be able to “cut off” parts of the JDK and gently deprecate and remove them over the next releases. And as a part of this improvement, Stuart Marks AKA Dr Deprecator has suggested JEP 277: “Enhanced Deprecation”

The idea is for this to enhance the @Deprecated annotation with some additional info, such as:

  • UNSPECIFIED. This API has been deprecated without any reason having been given. This is the default value; everything that’s deprecated today implicitly has a deprecation reason of UNSPECIFIED.
  • CONDEMNED. This API is earmarked for removal in a future JDK release. Note, the use of the word “condemned” here is used in the sense of a structure that is intended to be torn down. The term is not mean to imply any moral censure.
  • DANGEROUS. Use of this API can lead to data loss, deadlock, security vulnerability, incorrect results, or loss of JVM integrity.
  • OBSOLETE. This API is no longer necessary, and usages should be removed. No replacement API exists. Note that OBSOLETE APIs might or might not be marked CONDEMNED.
  • SUPERSEDED. This API has been replaced by a newer API, and usages should be migrated away from this API to the newer API. Note that SUPERSEDED APIs might or might not be marked CONDEMNED.
  • UNIMPLEMENTED. Calling this has no effect or will unconditionally throw an exception.
  • EXPERIMENTAL. This API is not a stable part of the specification, and it may change incompatibly or disappear at any time.

When deprecating stuff, it’s important to be able to communicate the intent of the deprecation. This can be achieved as well via the @deprecated Javadoc tag, where any sort of text can be generated.

An alternative, much better solution

The above proposition suffers from the following problems:

  • It’s not extensible. The above may be enough for JDK library designers, but we as third party API providers will want to have many more elements in the enum, other than CONDEMNED, DANGEROUS, etc.
  • Still no plain text info. There is still redundancy between this annotation and the Javadoc tag as we can still not formally provide any text to the annotation that clarifies, e.g. the motivation of why something is “DANGEROUS”.
  • “Deprecated” is wrong. The idea of marking something UNIMPLEMENTED or EXPERIMENTAL as “deprecated” shows the workaround-y nature of this JEP, which tries to shoehorn some new functionality into existing names.

I have a feeling that the JEP is just too afraid to touch too many parts. Yet, there would be an extremely simple alternative that is much much better for everyone:

public @interface Warning {
    String name() default "warning";
    String description() default "";
} 

There’s no need to constrain the number of possible warning types to a limited list of constants. Instead, we can have a @Warning annotation that takes any string!

Of course, the JDK could have a set of well-known string values, such as:

public interface ResultSet {

    @Deprecated
    @Warning(name="OBSOLETE")
    InputStream getUnicodeStream(int columnIndex);

}

or…

public interface Collection<E> {

    @Warning(name="OPTIONAL")
    boolean remove(Object o);
}

Notice that while JDBC’s ResultSet.getUnicodeStream() is really deprecated in the sense of being “OBSOLETE”, we could also add a hint to the Collection.remove() method, which applies only to the Collection type, not to many of its subtypes.

Now, the interesting thing with such an approach is that we could also enhance the useful @SuppressWarnings annotation, because sometimes, we simply KnowWhatWeAreDoing™, e.g. when writing things like:

Collection<Integer> collection = new ArrayList<>();

// Compiler!! Stop bitching
@SuppressWarnings("OPTIONAL")
boolean ok = collection.remove(1);

This approach would solve many problems in one go:

  • The JDK maintainers have what they want. Nice tooling for gently deprecating JDK stuff
  • The not-so-well documented mess around what’s possible to do with @SuppressWarnings would finally be a bit more clean and formal
  • We could emit tons of custom warnings to our users, depending on a variety of use-cases
  • Users could mute warnings on a very fine-grained level

For instance: A motivation for jOOQ would be to disambiguate the DSL equal() method from the unfortunate Object.equals() method:

public interface Field<T> {

   /**
     * <code>this = value</code>.
     */
    Condition equal(T value);

    /**
     * <strong>Watch out! This is 
     * {@link Object#equals(Object)}, 
     * not a jOOQ DSL feature!</strong>
     */
    @Override
    @Warning(
        name = "ACCIDENTAL_EQUALS",
        description = "Did you mean Field.equal?"
    )
    boolean equals(Object other);
}

The background of this use-case is described here:
https://github.com/jOOQ/jOOQ/issues/4763

Conclusion

JEP 277 is useful, no doubt. But it is also very limited in scope (probably not to further delay Jigsaw?) Yet, I wish this topic of generating these kinds of compiler warnings would be dealt with more thoroughly by the JDK maintainers. This is a great opportunity to DoTheRightThing™

I don’t think the above “spec” is complete. It’s just a rough idea. But I had wished for such a mechanism many many times as an API designer. To be able to give users a hint about potential API misuse, which they can mute either via:

  • @SuppressWarnings, directly in the code.
  • Easy to implement IDE settings. It would be really simple for Eclipse, NetBeans, and IntelliJ to implement custom warning handling for these things.

Once we do have a @Warning annotation, we can perhaps, finally deprecate the not so useful @Deprecated

@Warning(name = "OBSOLETE")
public @interface Deprecated {
}

Discussions

See also follow-up discussions on:

Top 10 Ceylon Language Features I Wish We Had In Java

What does one do when Hibernate is “finished” and feature complete and one needs new challenges? Right. One creates a new JVM language called Ceylon.

On November 12, 2013, Ceylon 1.0.0 was finally released and we congratulate the whole team at Red Hat for their achievements in what looks like a very promising new JVM language. While it will be a slight challenge for Ceylon to compete with Scala, there are lots of very interesting features that distinguish it.

In fact, this language has so many interesting features, it’ll be hard to write up a blog post about the 10 most interesting ones. Which ones to choose? On Google Plus, I’ve had a short chat with Gavin King who also brought us Hibernate, Ross Tate who is also involved with JetBrains’ Kotlin, and Lukas Rytz who was a PhD student and committer for EPFL’s Scala and now works at Google Dart. I wanted those language Uberdesigners to help me find the 10 most thrilling language features that they have and we Java developers don’t. Now I have 20 interesting ones. I’ll certainly write a follow-up post to this one.

I have observed Gavin King and the other guys to be very enthusiastic and knowledgeable. I’ve already had this impression before when I first heard about Ceylon from Stéphane Épardaud at the JUGS in Berne, Switzerland in February 2013, another one of RedHat’s passionate engineers (see his presentation’s slides here).

Anyway, enough of the who’s who. Here’s our personal Top 10 List of Ceylon Language Features I Wish We Had In Java:

1. Modules

In Java, Jigsaw has been postponed about 34 times and we’re only now closing in on Java 8 GA! Yes, we have OSGi and Maven, and both work very well to manage dependencies at runtime (OSGi) or at compile-time (Maven). But compare this black magic Maven/OSGi configuration using Apache Felix

<plugin>
  <groupId>org.apache.felix</groupId>
  <artifactId>maven-bundle-plugin</artifactId>
  <version>2.1.0</version>
  <extensions>true</extensions>
  <executions>
    <execution>
      <id>bundle-manifest</id>
      <phase>process-classes</phase>
      <goals>
        <goal>manifest</goal>
      </goals>
    </execution>
  </executions>
  <configuration>
    <supportedProjectTypes>
      <supportedProjectType>
        jar
      </supportedProjectType>
    </supportedProjectTypes>
    <instructions>
      <Bundle-SymbolicName>
        org.jooq
      </Bundle-SymbolicName>
      <Export-Package>*</Export-Package>
      <Import-Package>
        javax.persistence;resolution:=optional,
        org.apache.log4j;resolution:=optional,
        *
      </Import-Package>
      <_versionpolicy>
        [$(version;==;$(@)),$(version;+;$(@)))
      </_versionpolicy>
    </instructions>
  </configuration>
</plugin>

… with this one by Ceylon:

"The second best ever ORM solution!"
license "http://www.gnu.org/licenses/lgpl.html"
module org.hibernate "3.0.0.beta" {
    import ceylon.collection "1.0.0";
    import java.base "7";
    shared import java.jdbc "7";
}

Finally, things can be controlled on a jar-level, including visibility of packages. With only few lines of code. Please, Java, integrate Ceylon’s powerful module support.

It may be worth mentioning that Fantom is another language with integrated module support. See JodaTime’s Stephen Colebourne’s talk at Devoxx 2011: “Is Fantom Light Years Ahead of Scala?”. Stephen has also brought us ElSql, a new external SQL DSL for Java templating.

2. Sequences

This is the first time I’ve seen this kind of first class support for sequences in a typesafe language. Not only does Ceylon ship with all sorts of collection literals, it also knows types for these constructs. Concretely, you can declare an Iterable as such:

{String+} words = { "hello", "world" };

Notice the notation of the literal. It is of type {String+}, meaning that it contains at least one element. The type is assignment-compatible with {String*}, which represents a possibly empty sequence. Very interesting.

This goes on by supporting array literals as such:

String[] operators = [ "+", "-", "*", "/" ];
String? plus = operators[0];
String[] multiplicative = operators[2..3];

… or tuple literals:

[Float,Float,String] point = [0.0, 0.0, "origin"];

Notice also the range literal 2..3 which allows for extracting sub-arrays from the original array. So much sequence goodness in Ceylon!

Notice also the question mark in String?, which is Ceylon’s way of declaring …

3. Nullable types

While Scala knows the Option type and Haskell knows the Maybe type and Java 8 tries to compete by adding the new, unenforceable Optional type, Ceylon has a very simple notion of something that is nullable. If there’s a question mark behind a type, it’s nullable. Otherwise, it’s not null. Always.

In order to convert a nullable type into a not nullable type, you have to explicitly check:

void hello() {
    String? name = process.arguments.first;
    String greeting;
    if (exists name) {
        greeting = "Hello, ``name``!";
    }
    else {
        greeting = "Hello, World!";
    }
    print(greeting);
}

Notice the exists operator. It defines a new scope within which the name variable is known to be not null, i.e. it is promoted from String? to String. This locally scoped type promotion is commonly referred to as flow-sensitive typing, which has already been observed in the Whiley language, according to Lukas Rytz.

If you omit the exists check, you’d get a compilation error on that string interpolation there. There are also other useful constructs to perform ad-hoc type conversions:

String greeting = "Hello, " + (name else "World");

The else clause acts like a SQL COALESCE() function and can even be chained. Read more about Ceylon’s nullable goodness.

4. Defaulted parameters

OMG, how I wish we had that in Java. Every time we overload methods, we think, why not just support defaulted parameters like PL/SQL, for instance??

void hello(String name="World") {
    print("Hello, ``name``!");
}

I cannot think of a single good reason why languages wouldn’t have named and defaultable parameters like PL/SQL:

-- One of the parameters is optional
CREATE PROCEDURE MY_PROCEDURE (
  P1 IN NUMBER,
  P2 IN VARCHAR2 := 'ABC',
  P3 IN VARCHAR2
);

-- Calling the procedure
MY_PROCEDURE(
  P1 => 1,
  P3 => 'XYZ'
);

So this is one way to circumvent method overloading in most common cases. Method overloading is still tedious when we want to deal with alternative, incompatible types. But not in Ceylon, as Ceylon knows …

5. Union types

OK, this is a bit esoteric. The creators of Ceylon really really wanted to get rid of method overloading, partially because Ceylon also compiles to JavaScript, and JavaScript does not know function overloading. In fact, it is not possible to overload methods in Ceylon at all. To be able to interoperate with Java, however, union types needed to be introduced. A union type String|Integer can be either a String or an Integer. There’s method overloading right there!

void printType(String|Integer|Float val) { ... }
 
printType("hello");
printType(69);
printType(-1.0);

In order to “untangle” the union type, you can again take advantage of flow-sensitive typing for the val parameter by performing type-checks similar to Java’s instanceof

void printType(String|Integer|Float val) {
    switch (val)
    case (is String) { print("String: ``val``"); }
    case (is Integer) { print("Integer: ``val``"); }
    case (is Float) { print("Float: ``val``"); }
}

Within that scope, val is known to the compiler to be of type String, for example. This goes on to allowing crazy stuff like enumerated types where a type can be one or another thing, simultaneously:

abstract class Point()
        of Polar | Cartesian {
    // ...
}

Note that this is very different from multiple inheritance where such a Point would be both Polar and Cartesian. But that’s not all. Ceylon also has …

6. Intersection types

Now, as you may have guessed, that’s the exact inverse of a union type, and this is actually also supported by Java’s generics. In Java, you can write:

class X<E extends Serializable & Comparable<E>> {}

In the above example, X accepts only type parameters that are both Serializable and Comparable. This is much crazier in Ceylon where you can assign values to a locally declared intersection type. And that’s not it! In our chat, Gavin has pointed out this incredible language feature to me, where union / intersection types can interact with flow-sensitive typing to form the following (due for Ceylon 1.2):

value x = X();
//x has type X
if (something) {
    x = Y();
    //x has type Y
}
//x has type X|Y

Makes sense, right? So I asked him, if I will be able to intersect that type again with Z and Gavin said, yes! The following can be done:

value x = X();
//x has type X
if (something) {
    x = Y();
    //x has type Y
}
//x has type X|Y
if (is Z x) {
    //x has type <X|Y>&Z
}

And this goes on, because type intersections also interact with generics in a very interesting way. Under certain circumstances, X<A>&X<B> can be the same as X<A&B>. In other words, intersections (and unions) are distributive with generics, just like additions are with multiplications (in an informal understanding of “just like”). If you’re willing to delve into the language spec for this, see §3.7.2 Principal instantiation inheritance.

Now, union and intersection types can get quite nasty und hard to reuse. This is why Ceylon has …

7. Type aliases

Is there any other programming language that ever thought of this awesome feature?? This is so useful, even if you’re not supporting union and/or intersection types. Think about Java’s generics. With the advent of generics, people started writing stuff like:

Map<String, List<Map<Integer, String>>> map = // ...

Two things can be said:

  • Generics are extremely useful to the Java libraries
  • Generics become extremely verbose when doing the above

Here’s where type aliases come into play. Check out this example:

interface People => Set<Person>;

The point here is that even if some verbose types are reused very often, you don’t often want to create an explicit subtype for the above. In other words, you don’t want to abuse subtype polymorphism as a shortcut to “simplify” generic polymorphism.

Think of aliases as an expandable macro, which is mutually assignment-compatible. In other words, you can write:

People?      p1 = null;
Set<Person>? p2 = p1;
People?      p3 = p2;

So as the term “alias” suggests, you’re not creating a new type. You’re just giving a complex type a simpler name. But even better than type aliasing is …

8. Type inference

Many other languages have this and so does Java to a certain extent, at least as far as generics are involved. Java 8 goes one step further in allowing type inference with generics. But Java is far away from what languages like Scala or Ceylon can do with local variables:

interface Foo {}
interface Bar {}
object foobar satisfies Foo&Bar {}
//inferred type Basic&Foo&Bar
value fb = foobar; 
//inferred type {Basic&Foo&Bar+}
value fbs = { foobar, foobar };

So, this example shows a lot of features combined, including type constraints, sequence types, union types. With such a rich type system it is very important to support this level of type inference where a value keyword indicates that you don’t want to (or you cannot) explicitly declare a type. This, I’d really love to see in Java 9!

Read more about Ceylon’s awesome type inference capabilities.

9. Declaration-site variance

Now, this feature might be a bit harder to understand, as Java’s generics are already quite difficult to understand. I’ve recently read a very interesting paper by Ross Tate, Alan Leung and Sorin Lerner about the challenges brought to Java generics through wildcards: Taming Wildcards in Java’s Type System. Generics are still a very active research topic neither researchers nor language designers completely agree on whether use-site variance (as in Java) or declaration-site variance (as in C#, Scala, or Ceylon) is really better for mainstream programmers. Older languages talking about variance are Eiffel and OCaml.

Microsoft has introduced declaration-site variance in C#. I’ll cite the example from Wikipedia, which is very easy to understand. In C#, the IEnumerator interface has a covariant generic type parameter:

interface IEnumerator<out T>
{
    T Current { get; }
    bool MoveNext();
}

This simply means that the following will work:

IEnumerator<Cat> cats = ...
IEnumerator<Animal> animals = cats;

This is quite different from Java’s use-site variance, where the above wouldn’t compile, but the following would:

Iterator<Cat> cats = ...
Iterator<? extends Animal> animals = cats;

The main reason for declaration-site covariance is the simple fact that verbosity is greatly reduced at the use-site. Wildcards are a major pain to Java developers and they lead to numerous Stack Overflow questions as this one, which is about locally scoped wild-cards:

// Given this interface:
public interface X<E> {
    E get();
    E set(E e);
}

// This does not compile:
public void foo(X<?> x) {
    x.set(x.get());
}

As can be seen in the Ceylon language tour, Ceylon generics support declaration-site variance, just like C# and Scala. It will be interesting to see how these things evolve, as both types of variance support have their pros and cons, while at the same time, Ross Tate advocates mixed-site variance, which would really be a great addition for the Java language!

Now this was a bit complex, so let’s have a look at a simpler, yet awesome feature to round things up …

10. Functions and methods

One of the main things outlined by Stéphane Épardaud was the fact that the Ceylon language is a very regular language. This is particularly apparent when considering how Ceylon treats functions (and methods, which are type member functions). I can put a function everywhere. Consider this example:

Integer f1() => 1;
class C() {
    shared Integer f2() {
        Integer f3() => 2;
        return f3();
    }
}

print(f1());
print(C().f2());

In the above example,

  • f1() is a package-level function (much like a “global” static function in Java)
  • f2() is a regular method on the C class
  • f3() is a local function within the f2() method

With Java 8’s support for lambda expressions, these things get a bit better, but isn’t it awesome to be able to declare functions anywhere, in almost the same syntax?

Conclusion: Play around with Ceylon

That’s it for now. We might be publishing a follow-up article about the more esoteric language features in Ceylon, some time soon. In any case, you can download this interesting JVM language for free with first-class IDE support in Eclipse. You can also visit the Ceylon documentation website and have their website compile Ceylon code into JavaScript for execution in your browser.

Visit the Community and interact with the language designers from RedHat and Serli, and when you’re done, share this post on our jOOQ blog and help the JCP recognise that this wonderful language has a couple of very interesting features to put on the Java 9 or 10 roadmap!